Les oligo-éléments : Différence entre versions

De Wiki Auréa
Ligne 58 : Ligne 58 :
 
|<p align="center">40 à 1200 kg</p>
 
|<p align="center">40 à 1200 kg</p>
 
|<p align="center">1 à 30 kg</p>
 
|<p align="center">1 à 30 kg</p>
|<p align="center">40 à 1200 kg</p>
+
|<p align="center">40 à 1200 g</p>
 
|-
 
|-
 
|<p align="center">Cuivre (Cu)</p>
 
|<p align="center">Cuivre (Cu)</p>
 
|<p align="center">10 à 1500 kg</p>
 
|<p align="center">10 à 1500 kg</p>
 
|<p align="center">2 à 40 kg</p>
 
|<p align="center">2 à 40 kg</p>
|<p align="center">10 à 1500 kg</p>
+
|<p align="center">10 à 1500 g</p>
 
|-
 
|-
 
|<p align="center">Manganèse (Mn)</p>
 
|<p align="center">Manganèse (Mn)</p>
 
|<p align="center">400 à 15000 kg</p>
 
|<p align="center">400 à 15000 kg</p>
 
|<p align="center">8 à 400 kg</p>
 
|<p align="center">8 à 400 kg</p>
|<p align="center">400 à 15000 kg</p>
+
|<p align="center">400 à 15000 g</p>
 
|-
 
|-
 
|<p align="center">Fer (Fe)</p>
 
|<p align="center">Fer (Fe)</p>
 
|<p align="center">0,8 à 400 tonnes</p>
 
|<p align="center">0,8 à 400 tonnes</p>
 
|<p align="center">40 à 1000 kg</p>
 
|<p align="center">40 à 1000 kg</p>
|<p align="center">0,8 à 400 tonnes</p>
+
|<p align="center">0,8 à 400 kg</p>
 
|}  
 
|}  
  
Ligne 118 : Ligne 118 :
 
[[Fichier:p34-4.png|center]]
 
[[Fichier:p34-4.png|center]]
  
'''''N.B.:''''' pour le choix du porte-greffe en viticulture, le fer facilement extractible et le calcaire actif sont utilisés pour le calcul de l’indice de pouvoir chlorosant (IPC). c.f. : [http://wiki.laboratoirelca.com/index.php/Mati%C3%A8res_organiques#Ordre_de_grandeur]
+
'''''N.B.:''''' pour le choix du porte-greffe en viticulture, le fer facilement extractible et le calcaire actif sont utilisés pour le calcul de l’indice de pouvoir chlorosant (IPC). c.f. : [http://wiki.laboratoirelca.com/index.php/Le_calcaire_total_et_le_calcaire_actif]
  
  

Version du 9 mars 2011 à 15:52

Les Oligo-éléments        Cuivre, Zinc, Manganèse, Fer


Au laboratoire

  • Les oligos EDTA (cuivre, zinc, manganèse) : sont dosés après extraction à l’acétate d’ammonium en présence d’EDTA (sel de l’acide éthylène diaminotétracétique).

Méthode normalisée NF X 31-120.

1. a) 5 g de terre fine

    b) 50 ml de solution d’extraction à l’EDTA

2. Agitation 2h

3. Centrifugation

4. Mesure par spectrométrie plasma (ICP)

Expression des résultats :

en éléments Cu, Zn, Mn, en mg/kg de terre fine.


  • Le fer peut être déterminé par différentes méthodes d’extraction :

  1. Fer assimilable = méthodologie identique à la détermination du Cu, Zn, Mn décrite ci-dessus.

N.B. : l’EDTA peut, dans certains cas, être remplacé par une solution d’extraction au DTPA.

  2. Fer échangeable = extraction par l’acétate d’ammonium à pH neutre, de la même manière que le potassium, calcium et magnésium échangeables.

  3. Fer facilement extractible (suivant la méthode Juste) = extraction à l’oxalate d’ammonium.

N.B. : le fer facilement extractible est utilisé pour le calcul de l’indice de pouvoir chlorosant (IPC) sur sol calcaire (calcaire total ≥ 10 %).

Expression des résultats : en éléments Fe en mg/kg de terre fine.


Signification agronomique

Principe de Chélation - exemple du fer :

P31.png


Site de présence des Oligo-éléments

P32-1.png

Quantités d’éléments totaux/ha

Quantités d’éléments disponibles/ha

Quantités d’éléments absorbés par la plante/ha

Zinc (Zn)

40 à 1200 kg

1 à 30 kg

40 à 1200 g

Cuivre (Cu)

10 à 1500 kg

2 à 40 kg

10 à 1500 g

Manganèse (Mn)

400 à 15000 kg

8 à 400 kg

400 à 15000 g

Fer (Fe)

0,8 à 400 tonnes

40 à 1000 kg

0,8 à 400 kg


Interprétation des résultats

Bases générales

  • Pour le cuivre EDTA
P33-1.png

Le dosage du cuivre échangeable (à l’acétate d’ammonium) est une méthode plus pertinente pour apprécier les risques de toxicité.

N.B.: le rapport \frac {\text{Cu EDTA}} {\text{M.O.}^*} peut être utilisé pour diagnostiquer des situations à risque de carence en cuivre, en particulier sur sols argilo-calcaires.

Exemple pour terres de groies, craie ou champagne si \frac {\text{Cu EDTA}} {\text{M.O.}^*} < 0,4

* M.O. = Matières Organiques


  • Pour le zinc EDTA (grandes cultures)'
P33-2.png


  • Pour le zinc EDTA (vigne et arboriculture)
P34-1.png


  • Pour le manganèse EDTA
P34-2.png


  • Pour le fer EDTA
P34-3.png


  • Pour le fer oxalate (facilement extractible)
P34-4.png

N.B.: pour le choix du porte-greffe en viticulture, le fer facilement extractible et le calcaire actif sont utilisés pour le calcul de l’indice de pouvoir chlorosant (IPC). c.f. : [1]


A noter :

Les Oligo-éléments extraits à l’EDTA ont un intérêt limité en viticulture :

  • Pour le Cu et le Mn, il s’agit surtout de problèmes d’excès
  • Pour le Zn, les carences sur vigne sont très rares en France
  • Le fer EDTA n’est pas pertinent pour détecter les risques de chlorose ferrique


Appréciation des Oligo-éléments dans les sols

Cuivre (Cu)

Zinc (Zn)

Milieu favorable à la déficience

  • Faible réserve du sol
  • Sols sableux, très lessivés
  • Sols calcaires, sables calcaires
  • Sols organiques, tourbeux
  • Sols très riches en phosphore
  • Forte fertilisation azotée
  • Faible réserve du sol
  • pH élevés, sols sur chaulés
  • Sols froids au printemps
  • Sols pauvres en matière organique
  • Sols très aérés

Symptômes de carence

Difficilement détectables, sauf dans les cas avancés.

Décoloration blanche des pointes des jeunes feuilles des céréales, puis trouble de l’épiaison.

Sur maïs, feuilles terminales manquant de turgescence.

Généralement les jeunes pousses sont les plus touchées.

Chlorose internervaire, réduction de taille et malformation des feuilles et rameaux.

Plantes sensibles

Blé, orge, avoine, luzerne, laitue, tabac, carotte, oignon Maïs, sorgho, lin, haricot, pommier, pêcher

Doses d’apport au sol

5kg cuivre (Cu)/ha 8 à 10 kg zinc (Zn)/ha

Formes utilisables

en fertilisation

Sources

% Cu apporté

Sources

% Zn apporté

Sulfate de Cu (stable)

Bouillie bordelaise

Oxydes de Cu

Oxychlorures de Cu

Chélates de Cu

25

12

70 à 88

50

9 à 13

Sulfate de Zn

Oxydes de Zn

Nitrate de Zn

Chélates de Zn

22

75

15

9 à 14


A noter :
  • Apport au sol pour plusieurs années (3 à 5 ans), dose préconisée en élément pur.
  • Apport foliaires possibles pour pallier d’éventuelles apparitions de symptômes carentiels. Il ne peuvent pas remplacer la correction su sol.


Manganèse (Mn)

Fer (Fe)

Milieu favorable à la déficience

  • Faible réserve du sol
  • Sols bien drainés neutres ou alcalins
  • Climat froid et sec en période de croissance
  • Sols très riches en matières organiques
  • Sols très pauvres en matières organiques
  • Faible réserve du sol
  • Sols à teneur élevée en bicarbonates
  • Antagonismes Fe/Mn
  • Excès d’eau, hydromorphie
  • Sols compactés
  • Niveaux élevés en azote nitrique (NO3)
  • Sols très riches en P2O5 assimilable

Symptômes de carence

Proche de ceux de la carence en magnésie, mais atteignant d’abord les jeunes feuilles.

Au stade avancé, seules les nervures et les zones adjacentes restent vertes.

Début : pâleur des feuilles puis chlorose internervaire nette, réseau de nervures vertes finement réticulé.

Stade suivant : toute la feuille est atteinte y compris les nervures secondaires, voire principales.

Apparition de zones nécrotiques, chute prématurée des feuilles en arboriculture et en vigne.

Plantes sensibles

Avoine, blé, sorgho, betterave sucrière, haricot, laitue, pois, soja, pommier, pêcher, vigne Haricot, soja, chou, betterave sucrière, tomate, poirier, pêcher, prunier, vigne, citrus

Doses d’apport au sol

20 kg manganèse (Mn)/ha 100 à 600 kg fer (Fe)/ha, selon les cultures

Formes utilisables

en fertilisation

Sources

% Mn apporté

Sources

% Fe apporté

Sulfate de Mn

Oxydes de Mn

Chlorures de Mn

Chélates de Mn

  • Mancozèbe
  • Manèbe

26 à 28

40 à 68

27

12

16 (+ 2 % Zn)

20

Sulfate de fer

Oxydes de fer

Chélates de fer

2 à 23

69 à 77

5 à 14


A noter :
  • Les apports au sol de manganèse ne sont efficaces que dans de très rares cas. Leur préférer des apports foliaires.